
Abstract. Computational schemes are presented with
which to evaluate the electrostatic Coulomb energy in
relativistic molecular electronic structure calculations
using a basis of four-component Dirac spinor ampli-
tudes. We demonstrate that algorithms may be con-
structed and implemented which differ only in minor
details from those in common use in nonrelativistic
quantum chemistry, and that the four-component for-
malism is neither as complicated nor as expensive as has
been suggested recently in the literature. Spherically
symmetrical atomic basis sets are presented which indi-
cate that accurate representations of the Coulomb
energy may be obtained using modest expansions of the
electronic density in a scalar auxiliary basis set of
spherical harmonic Gaussian-type functions.

Key words: Coulomb energy evaluation – Relativistic
self-consistent-field four-component formalism –
J-matrix method – Fitting procedures – Spherical
harmonic Gaussian-type functions

1 Introduction

The calculation of the electronic structures of molecules
based on the relativistic four-component Dirac formal-
ism is widely perceived as introducing unnecessary
computational complexity and expense, and has led
to the development of a number of quasirelativistic
approaches to relativistic quantum chemistry. These
include the relativistic pseudopotential method, relativ-
istic extensions of the semiempirical formulation, and
reductions of the Dirac–Coulomb–Breit operator to
two-component form. Additionally, certain variational
features of the relativistic four-component formulation
of the electronic problem in a finite basis set have been
described recently in the literature as an ‘‘ugly problem’’

whose solution introduces ‘‘unwarranted’’ expense and
‘‘extreme programming difficulties’’ [1].
A closer examination of the challenges involved in

constructing relativistic four-component models of
electronic structure reveals that these concerns are
wholly unfounded. The use of matched spinor-type basis
functions is recognized as a stable and robust solution to
the problem of variational collapse [2], and is used in a
number of Dirac–Hartree–Fock programs, including
both BERTHA [3,4] and DIRAC [5, 6], which are both
under active development. These programs serve as the
starting point for the evaluation of many-body correc-
tions using relativistic formulations of many-body
perturbation theory, coupled-cluster theory, multicon-
figurational self-consistent-field theory, and configura-
tion interaction. The existing relativistic four-component
molecular codes are currently limited to the treatment of
small molecular species. This restriction is not imposed
by any intrinsic limitation inherent in the four-compo-
nent formulation, but by the comparatively limited
development times invested in the existing relativistic
molecular codes. All existing molecular Dirac–Hartree–
Fock codes are based on conventional integral direct
strategies of the type pioneered by Almlöf et al. [7] which
scale quadratically with the size of the system under
optimal conditions, but are yet to take advantage of the
recent development of linear scaling methods. These
include the use of density-fitting procedures and multi-
pole expansions of the electronic potentials. Either
method is applicable directly, with minor procedural
modifications, to the relativistic formulation of the
electronic structure problem. The implementation of
these sophisticated economization techniques and the
ready availability of powerful computing platforms are
primarily responsible for facilitating the ab initio mod-
elling of large, extended molecular systems within the
nonrelativistic quantum chemical framework. The most
significant recent algorithmic developments in quantum
chemistry have reduced the intrinsic complexity of the
computational model, which is characteristic of the
number of particles in the system. In contrast, the use of
the relativistic four-component formulation increases
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the intrinsic complexity of the model by a fixed factor
compared with the nonrelativistic Schrödinger equation,
this factor being independent of the number of particles
involved. This increase in complexity is caused by the
internal structure of the single-particle spinor solutions
of the Dirac equation, and the reduction in symmetry
imposed by the spin-orbit interaction involving the
electronic spin and the relativistic current density. If one
is interested in modelling the structures of compounds
containing heavy elements, it is these relativistic phe-
nomena which are of the greatest interest and it seems
advisable to model them as faithfully as is feasible. All
quasirelativistic models aim to reproduce the results
obtained from the Dirac– Coulomb–Breit operator
through semiempirical means, perturbation theory, or
by reduction of the spinors to two-component form. It is
desirable, therefore, that no such reduction be per-
formed if a practical implementation of the four-com-
ponent formulation is feasible, both to calibrate more
approximate methods, and as a computational method
in its own right.
In practice, the most significant effect of employing a

two-component reduction of the Dirac operator is to
alter the role played by the most significant algebraic
feature of the relativistic problem, the two-component
operator r � p. In the four-component formalism, this
operator couples two pairs of components, the elements
of which are determined in orthogonal two-component
subspaces, the spans of which are determined by the
reciprocal operation of r � p. Matrix elements in the
four-component formalism are always evaluated using a
bispinor expansion in two-component functions, so that
the operations are blocked into separate subspaces in-
volving overlap products of two-component functions,
which may be two component spinors or spin-orbitals. If
perturbation theory or two-component reductions are
employed, the operator r � p appears in a series of rela-
tivistic two-component correction operators which act
on a conventional spin-orbital function space. In the
evaluation of the matrix elements of these relativistic
correction operators, however, one must address many
of the same issues that are encountered in a four-com-
ponent treatment, since many of the same integrals must
be evaluated over basis functions of similar functional
form. In the four-component formalism, many of the
economies apparently gained in the two-component
formalism may be achieved simply by neglecting multi-
centre two-electron contributions which scale as (Za)4.
These contributions involve small-component overlap
densities, and formally involve the most expensive
classes of two-electron integral, even though their effect
on the total energy and most properties is either small or
negligible in most cases.
The arguments against the use of the four-component

formulation are weakest if one considers the imple-
mentation of relativistic density functional theory in a
form suitable for quantum chemical studies. This is
particularly true for the evaluation of the Coulomb
interaction energy, which is one of the most extensively
studied problems in electrostatics. Electron density and
the scalar electrostatic potential which is generated by it
are classical quantities, and it is not significantly more

difficult to construct an electron density from four-
spinor amplitudes than it is to evaluate the same quan-
tity from nonrelativistic spin-orbitals. Similarly, one
may construct approximate representations of the scalar
potential generated by such relativistic density distribu-
tions using precisely the same methods as one finds in
nonrelativistic quantum chemistry. In this article we
investigate the expansion of relativistic charge densities
using scalar auxiliary basis sets of both Hermite and
spherical harmonic Gaussian-type functions. The con-
struction of the relativistic J matrix is described using an
algorithm which is similar to that existing in nonrela-
tivistic procedures that form the basis of several Har-
tree–Fock and density functional programs. This
approach is extended in the present article to include the
blockwise decomposition into component densities
within a kinetically balanced set of G-spinor basis
functions. The block-diagonalization of the density
matrix is then described utilizing an extension of the
density-fitting techniques which are a key component of
integral direct approaches to the evaluation of the
Coulomb energy in large, extended systems.
It is demonstrated in this article, in contrast to recent

statements which advocate scalar two-component ap-
proaches to relativistic quantum chemistry [1], that
computational approaches may be adopted that are both
stable and practically indistinguishable from those found
in existing quantum chemistry packages, and that may
be implemented using straightforward extensions of ex-
isting techniques. The methods advocated here involve
no difficulties which are not already present in nonrela-
tivistic and quasirelativistic scalar or two-component
formulations.

2 Evaluation of the density in a finite basis set

In a relativistic electronic quantum theory the quantities
of most immediate significance are the charge density, .,
and the current density, j, associated with a single-
particle Dirac spinor, w. In hartree atomic units these
quantities are defined by

. ¼ wyw ð1Þ
and

j ¼ cwyaw ; ð2Þ
where ca ¼ ðcax; cay ; cazÞ denotes the 4� 4 matrix
representation of the relativistic electron current opera-
tor. For the spatial part of a four-component Dirac,
wðrÞ, we write

wðrÞ ¼

w1ðrÞ
w2ðrÞ
w3ðrÞ
w4ðrÞ

2
664

3
775 ð3Þ

and the corresponding adjoint vector, wyðrÞ, is defined
by

wyðrÞ ¼ ½w�
1ðrÞ w�

2ðrÞ w�
3ðrÞ w�

4ðrÞ	 : ð4Þ
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The charge density and the Cartesian components of the
current density are obtained by matrix multiplication
using the definitions of w; wy, and the matrices
aq; for q ¼ x; y; z: These four fundamental quantities
may be assembled into a charge–current four-vector,
but we make no use of such manifestly relativistic
constructions here.
The principal computational task is the determina-

tion of the spinors, which are single-particle solutions of
the Dirac equation constructed for some effective time-
independent potential. The Rayleigh–Ritz procedure, in
which the required functions are determined as finite
basis set expansions, provides the foundation of most
practical methods of electronic structure determination
for atoms and molecules. An analysis of this method in
the context of relativistic molecular structure calcula-
tions has recently been presented in Ref. [2].
Of the possible choices of basis set which we might

use to expand the basis set and which do not suffer from
the variational problems discussed in Ref. [2], the
G-spinor basis set confers all of the advantages regarding
the evaluation of multicentre integrals which make
Gaussian-type functions the most widely used expansion
set in quantum chemistry. The G-spinor basis set of two-
component functions of the form

M ½L; l; r	 ¼ 1

rAl
f L
l ðrAlÞvjlml

ð#Al;uAlÞ ð5Þ

and

M ½S; l; r	 ¼ i
rAl

f S
l ðrAlÞv
jlml

ð#Al;uAlÞ : ð6Þ

If we write the basis functions in the general form
M ½T ; l; r	, the label T ¼ L denotes the large component
set and T ¼ S denotes the small-component set. There
is a one-to-one mapping between the elements which are
labelled by the multi-index, l. This index contains
information about the specification of the functions of
the form

l 7! fjl;mlkl;Alg ; ð7Þ
where jl is the fine-structure quantum number, j ¼
f�1;�2; � � �g, ml is the magnetic quantum number,

jl � jl; jl ¼ ð2jjlj þ 1Þ=2 kl is the Gaussian expo-
nent, and Al is the position of the local origin with
respect to which the radial and angular coordinates
which define the functions are specified. The functions
vjlml

ð#l;uAlÞ are the two-component spin-angular
functions,

vj;mðh;uÞ ¼
ðjþm
2j Þ

1=2Y m
1=2
j
1=2 ðh;uÞ

ðj
m
2j Þ

1=2Y mþ1=2
j
1=2 ðh;uÞ

2
4

3
5 j < 0 ; ð8Þ

vj;mðh;uÞ ¼

ðjþ1
m

2jþ2 Þ
1=2Y m
1=2

jþ1=2 ðh;uÞ

ðjþ1þm
2jþ2 Þ

1=2Y mþ1=2
jþ1=2 ðh;uÞ

2
4

3
5 j > 0 ; ð9Þ

where ‘ ¼ jþ 1
2 sgnj: This basis allows one to construct

solutions of the central-field Dirac equation which are
symmetry-adapted to the rotation double-group

SOð3Þy, reflecting all of the constants of the motion
in the quantum number set fj;m; j; ag.
The functional relationship between large- and

small-component basis functions is determined by the
kinetic balance prescription, M ½S; l; r	 / r � p M ½L; l; r	:
If we choose f L

l ðrAlÞ to be the radial part of a spherical
harmonic Gaussian-type function that is defined with
respect to a coordinate system centred at Al, then

f L
l ðrAlÞ ¼ NL

l r
llþ1
Al expð
klr2AlÞ ; ð10Þ

and the restricted kinetically matched small component
is

f S
l ðrAlÞ ¼ NS

l ½ðjl þ ll þ 1Þ 
 2klr2Al	r
ll
Alexpð
klr2AlÞ :

ð11Þ
The exponent set fkl; l ¼ 1; . . . ;Ng is chosen in order
to provide a compact representation of the spectrum,
while providing as complete a representations as possi-
ble. This is the usual ‘‘basis set problem’’ of quantum
chemistry. We shall adopt the normalization conditionZ

My½T ; l; r	M ½T ; l; r	dr ¼ 1 ð12Þ

for T ¼ L; S. Using the standard integralZ 1

0

x2nexpð
kx2Þdx ¼ Cðn þ 1=2Þ
2knþ1=2 k > 0 n ¼ 0; 1; . . .

ð13Þ
and the orthonormality of the spin-angular functions,
vj;j;m, one obtains the normalization constants

NL
l ¼ 2ð2klÞllþ3=2

Cðll þ 3=2Þ

" #1=2
ð14Þ

and

NS
l ¼ 2ð2klÞllþ1=2

Cðll þ 5=2Þ

" #1=2
: ð15Þ

It is convenient to define the normalization constant of a
product density by the notation

NTT 0

lm ¼ NT
l NT 0

m : ð16Þ

In a G-spinor representation, any component of the
four-current may be reduced to a linear combination
of quantities derived from two-component objects,
according to the rules

.TT
lm ðrÞ ¼ M y½T ; l; r	r0M ½T ; m; r	

¼
X
ijk

E0½T ; l; T ; m; i; j; k	H ½ p;P; i; j; k	 ð17Þ

and

jT �TT
q;lmðrÞ ¼ c M y½T ; l; r	rqM ½�TT ; m; r	

¼ c
X
ijk

Eq½T ; l; �TT ; m; i; j; k	H ½p;P; i; j; k	 ; ð18Þ
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where T is either L or S, and �TT 6¼ T . The overlap
components .TT

lm ðrÞ are the G-spinor overlap charge

densities, and jT �TT
q;lmðrÞ is a component of the overlap

current density, where q ¼ fx; y; zg. The expansion of
these quantities, involving a finite summation over
fi; j; kg is performed using the Eq coefficients, Eq½T ; l;
T 0; m; i; j; k	, which we have described elsewhere [2, 3, 4],
and the Hermite Gaussian auxiliary basis, H ½p;P; i; j; k	.
The operators faqg; q ¼ x; y; z are constructed from the
two-dimensional blocks frqg so we are able to generate
the components of the four-current without explicit
consideration of zero-valued couplings between spinor
components. In order to introduce additional notational
symmetry, we have introduced explicitly the 2� 2 unit
operator r0 ¼ I2: The definition and construction of the
Eq coefficients enables the efficient analytic evaluation
of all multicentre G-spinor Coulomb integrals using a
relativistic generalization of the McMurchie–Davidson
algorithm. In order to evaluate the matrix elements of
exchange–correlation energy, however, quadrature
methods are required.

3 Evaluation of the Coulomb energy using
the J-matrix method

In relativistic single-particle theories it proves convenient
to separate the Fock matrix into Coulomb (J matrix)
and exchange–correlation (K matrix) contributions.
Electron density is a real, scalar quantity, and we may
eliminate all spinor structure in relativistic J matrix
construction.
Following Almlöf [8] and Ahmadi and Almlöf [9], we

define a scalar Hermite density matrix, H,

H½ab; ijk	 ¼
X
lm

fE½l; L; m; L; ijk	DLL
lm

þ E½l; S; m; S; ijk	DSS
lmg ; ð19Þ

where the labels fabg indicate origin locations and
exponents, and the sum over flmg includes all basis
functions of a given nominal ‘ that share the labels fabg.
The indices fijkg are Hermite polynomial indices. The
large-component Hermite set is a subset of the small-
component set as a consequence of kinetic balance
and the matching of functions. The efficiency of this
approach compared with the summation over two-
electron G-spinor integrals increases with increasing
angular momentum, since more density is accumulated
in each sum over flmg. Although the form ofH½ab; ijk	
is the same as the nonrelativistic case, the length is
longer because fijkg is determined by the small compo-
nent.
We employ the Hermite density to construct single-

particle Coulomb matrix elements in a scalar Hermite
basis set

½i0j0k0;a0b0jVC	 ¼
X
ab

X
ijk

½i0j0k0;a0b0jijk;ab	H½ab; ijk	 ; ð20Þ

where ½i0j0k0; a0b0jijk; ab	 is a two-electron electrostatic
integral involving Hermite Gaussian functions.

The essential ingredients in the calculation of elec-
trostatic Coulomb interactions in relativistic self-con-
sistent field theory are supplied by the generalized
Hermite charge–current density matrix

Hq½ab; ijk	 ¼
X
lm

fEq½l; T1; m; T2; ijk	DT1T2
lm

þ Eq½l; T3; m; T4; ijk	DT3T4
lm g ; ð21Þ

where the charge density requires T1 ¼ T2;T3 ¼ T4;
T1 6¼ T3; and q ¼ 0, and the components of the current
density are obtained from T1 6¼ T2; T3 6¼ T4; T1 ¼ T4;
and q ¼ fx; y; zg. In terms of the Hermite Gaussian
functions, H ½ab; ijk; r	, the electron density, .ðrÞ, and the
components of the current density, jqðrÞ, are given by

.ðrÞ ¼
X
ab

X
ijk

H ½ab; ijk; r	H0½ab; ijk	 ð22Þ

and

jqðrÞ ¼
X
ab

X
ijk

H ½ab; ijk; r	Hq½ab; ijk	 : ð23Þ

All spinor structure has been absorbed in the compo-
nents of the charge–current density, each of which is a
real, scalar quantity.
The J-matrix elements in the G-spinor basis set are

finally obtained by repeated use of the scalar Hermite
Gaussian integrals

JTT
l0m0 ¼

X
i0j0k0

E½l0; T ; m0; T ; i0j0k0	½i0j0k0; a0b0jVC	 ; ð24Þ

where the spinor elements fl0m0g are spanned by the
scalar labels fa0b0g, which include specification of the
exponents and local coordinate origins of the spinor
basis functions. This operation involves the cost of a
nuclear attraction integral. The total Coulomb energy,
EJ , is then given by

EJ ¼ 1
2

X
lm

ðDLL
lmJ

LL
lm þ DSS

lmJ
SS
lm Þ : ð25Þ

4 Evaluation of the Coulomb energy by fitting procedures

The use of density-fitting procedures is based on the
observation that the set of direct products of Gaussian-
type-function orbital basis functions provides a
representation of the density with a high degree of
redundancy. The total density is therefore fitted to an
auxiliary atom-centred basis set, fftðrÞg; according to
the prescription [10]

.ðrÞ ’
XK
t¼1

qtftðrÞ ; ð26Þ

where the expansion coefficients qt may be interpreted as
representing the effective charge carried by ftðrÞ. In
order for this procedure to be worthwhile, the length of
the expansion, K, must be proportional to the dimension
of the orbital basis, Nb. Typically, the value K ¼ 3Nb is
regarded as a satisfactory expansion length, with respect
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to the compromise between accuracy of the fitting
procedure and the improvement in efficiency which is
sought. There are two density-fitting schemes in com-
mon use. A new scheme devised by Manby and Knowles
[11] will also be discussed which fits the electrostatic
potential to an auxiliary basis set, and implicitly deduces
the density from it by the Poisson equation.
We emphasize that in each of these methods there is

no need to introduce separate auxiliary basis sets in
which to expand separately the large- and small-com-
ponents densities, .LLðrÞ and .SSðrÞ. It is also immedi-
ately apparent on physical grounds that this auxiliary
basis set need be only slightly larger than the corre-
sponding set which would be used in a nonrelativistic
calculation. The use of the kinetic balance prescription
requires that large- and small-component basis func-
tions be matched in pairs, with each pair associated
with a single Gaussian exponent, as defined in Eqs. (10)
and (11). Consequently, the local origins of the overlap
charge distributions for the large- and small-compo-
nents, whose functional forms are defined by the
Gaussian product theorem, are identical. This feature,
which has already been exploited in the relativistic
J-matrix algorithm, arises because the Gaussian prod-
uct theorem exploits only the local origins of the basis
functions and the Gaussian exponents. These quantities
are in a one-to-one correspondence, so the compo-
nentwise decomposition of the overlap charge densities
differs only in finite polynomial terms. In addition, the
small-component density is highly localized to the
neighbourhood of the nuclei. When the small-compo-
nent density is summed over all occupied states the
additional polynomial parts lead to a weakly aniso-
tropic distribution dominated by one-centre basis set
overlap densities densities which are readily reproduced
by an atom-centred auxiliarly basis set including scalar
functions involving low values of orbital angular mo-
mentum. To a first approximation, the small-compo-
nent density is well-approximated by an assembly of
point charges located at the positions of the nuclei.
This model is sometimes used to estimate the small-
component contributions to the Coulomb energy in
molecular systems. In chemical applications it is known
from the use of these simple models that we may
readily incorporate the finite extent and aniostropy of
these small-component distributions using a modest
expansion of atom-centred scalar functions, so the bulk
of the work in fitting the density is nonrelativistic in
character.

4.1 Overlap metric

The direct fitting of the density is achieved by selecting
an auxiliary basis set, ftðrÞ, and constructing the overlap
matrix, S, where

Sts ¼
Z

f �
t ðrÞfsðrÞdr ¼ h ftj fsi ð27Þ

If the basis functions are assumed to be elements of
a column vector, f, an orthonormal basis f 0, may be
constructed by Löwdin symmetric orthogonalization:

f0 ¼ fS
1=2 : ð28Þ
This assumes that the overlap matrix is nonsingular, and
that a solution of the matrix eigenvalue equation,

SU ¼ sU ; ð29Þ
may be found for the diagonal matrix s containing the
(positive) eigenvalues of S. The orthogonalizing trans-
formation is constructed according to

S
1=2 ¼ Us
1=2Uy ; ð30Þ
where the diagonal matrix s
1=2 has nonzero elements
½s
1=2	ii ¼ ðsiiÞ
1=2: Clearly, difficulties will arise if the
primary basis set approaches computational linear
dependence, since at least one eigenvalue will approach
zero. Under these circumstances, the canonical trans-
formation is adopted in which the components corre-
sponding to small eigenvalues are eliminated.
In the relativistic extension of this scheme, the fitted

density, ~.., is now represented by projecting it onto the
orthonormal basis

~.. ¼ fy0hf0j.i ¼ fy0ðhf0j.LLi þ hf0j.SSiÞ
¼ fyS
1=2hfS
1=2j.i
¼ fyS
1hfj.i
¼ fy~qq ð31Þ
which is just a restatement of Eq. (26) as a matrix
scalar product. Note that the spinor structure of the
density matrix is wholly absorbed in the definitions of
the vector of expansion coefficients, q, each element of
which may be regarded as the sum of contributions
from matched pairs of large- and small-component
overlap densities.
The Coulomb energy, EJ is given by

EJ ¼ 1
2
~qqyV~qq ; ð32Þ

where

~qq ¼ S
1hfj.i : ð33Þ
The Coulomb energy is a scalar quantity, and it may not
as a consequence exhibit any features of the internal
spinor structures from which it is constructed.
A Coulomb contribution to the Fock or Kohn–Sham

matrix in a relativistic self-consistent-field calculation
reflects the components to which the total electrostatic
potential is coupled. A block of the Coulomb matrix is
designated JTT

ij , where T ¼ L represents the large-com-
ponent block, T ¼ S represents the block constructed
from the small-component overlap density, and the
indices fi; jg correspond to the spinor basis function
labels. An element of JTT is given by

JTT
ij ¼ ~qqTT yij V~qq ; ð34Þ

where

~qqTTij ¼ S
1hfj.TT
ij i : ð35Þ

The elements of the vector ~qqTTij are constructed from the
integral list hfj.TT

ij i, which is constructed from elements
of the form
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h ftj.TT
ij i ¼

Z
f �
t ðrÞ.TT

ij ðrÞdðrÞ ; ð36Þ

where .TT
ij ðrÞ ¼ My½T ; i; r	M ½T ; j; r	. These are, in gener-

al, three-centre overlap integrals, which may be eval-
uated rapidly using standard methods if the primary
spinor and auxiliary scalar basis sets are of Gaussian
type.

4.2 Electrostatic metric

The electrostatic Coulomb integral over scalar auxiliary
functions,

Vts ¼
ZZ

f �
t ðr1Þ

1

r12
fsðr2Þdr1dr2

¼ ð ftjvjfsÞ ; ð37Þ

may be used to modify the metric used to perform the
fitting of the density. In this case the orthonormal basis
set is

f00 ¼ fV
1=2 ð38Þ
and the fitted representation of the density, .00, is

.00 ¼ fQ ; ð39Þ
where

Q ¼ V
1ðhfjvj.LLi þ hfjvj.SSiÞ

¼ V
1hfjvj.i: ð40Þ

The electrostatic Coulomb energy is given by

EJ ¼ 1
2Q

yVQ : ð41Þ

In the relativistic extension of the scheme, a matrix
element of the Coulomb interaction in the orbital basis
set is

JTT
ij ¼ QTT y

ij VQ ; ð42Þ

where

Q
TT y
ij ¼ V
1ðfjvj.TT

ij Þ : ð43Þ

A typical element of the integral list (fjvj.TT
ij ) is given

by

ðftjvj.TT
ij Þ ¼

ZZ
f �
t ðr1Þ

1

r12
.TT
ij ðr2Þdr1dr2 : ð44Þ

These involve three-centre, three-index Coulomb inte-
grals which may be evaluated by standard methods,
either as they are required or pretabulated in an external
file. The large- and small-component integrals involving
fixed primary spinor basis function indices fi; jg may
be evaluated simultaneously using almost all existing
integrals generation algorithms. This feature arises
because the kinetic balance prescription requires that
the exponent values corresponding to labels fi; jg are
independent of the component labels, fTg.

4.3 Manby–Knowles metric

Manby and Knowles have recently proposed a scheme
[11] to evaluate the Coulomb energy and Coulomb
matrix elements which exploits the relationship between
vðrÞ and .ðrÞ defined by the Poisson equation:
$2vðrÞ ¼ 
4p.ðrÞ : ð45Þ
Defining P̂P ¼ 
ð1=4pÞr2, this is equivalent to P̂PvðrÞ ¼
.ðrÞ. If one constructs a fitted potential, ~vvðrÞ, as an
expansion in some auxiliary basis fnaðrÞg,

~vvðrÞ ¼
XK

a¼1
canaðrÞ ; ð46Þ

the Poisson equation fixes the expansion of the density,
~..ðrÞ, to be

~..ðrÞ ¼
XK
a¼1

caP̂PnaðrÞ : ð47Þ

For any function f ðrÞ which decays for large r ¼ jrj
faster than 1/r, an application of Green’s theorem yields
the identityZ
dr0

r2f ðr0Þ
jr
 r0j ¼ 
4pf ðrÞ : ð48Þ

Noting that P̂PfnaðrÞg represents the auxiliary density
which generates the auxiliary potential naðrÞ, a matrix
element of the Coulomb interaction may be written

Jab ¼
Z
dr1

Z
dr2

½P̂P 1naðr1Þ	½P̂P 2nbðr2Þ	
jr1 
 r2j

: ð49Þ

Application of Eq. (48) to the integration over r1 yields

Jab ¼
Z

naðrÞP̂PnbðrÞdr : ð50Þ

This reduces the six-dimensional, electrostatic two-
electron integral into a three-dimensional, one-electron
integral. If one considers the expansion of the density in
the primary orbital basis,

.ðrÞ ¼
X
ij

.ijðrÞDij ; ð51Þ

using the primary density matrix, D, subsequent appli-
cation of Eq. (48) and employing relativistic compo-
nentwise densities yields the matrix element in the mixed
basis:

JTT
a;ij ¼

Z
dr1

Z
dr2

½P̂P 1naðr1Þ	.TT
ij ðr2Þ

jr1 
 r2j

¼
Z

naðrÞ.TT
ij ðrÞdr : ð52Þ

The role of the functions fnaðrÞg is to fit the global
electrostatic potential, vðrÞ, through the expansion
defined by Eq. (46). The interpretation of Eq. (52)
follows directly from the energy-density relation

EJ ½.	 ¼
1

2

Z
.ðrÞvðrÞdr : ð53Þ
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Equations (46) and (51) may be substituted into Eq. (53)
to obtain Eq. (52) without invoking the Poisson
equation or Green’s theorem, since no explicit functional
relationship exists between f.ijðrÞg and fnaðrÞg. The
efficiency of this procedure depends only on the accuracy
with which ~vv(r) in Eq. (46) approximates vðrÞ in Eq. (53),
which in turn depends on the critical points and the
asymptotic form of vðrÞ and the selection of the auxiliary
basis functions, fnaðrÞg.
The error in the determination of the Coulomb en-

ergy, D, defined by

D ¼
Z
dr1

Z
dr2

½.ðr1Þ 
 ~..ðr1Þ	½.ðr2Þ 
 ~..ðr2Þ	
jr1 
 r2j

; ð54Þ

is minimized whenX
b

JTT
ab cb ¼

X
ij

ðJLL
a;ijD

LL
ij þ JSS

a;ijD
SS
ij Þ : ð55Þ

The total Coulomb energy is then of the form

�EEJ ¼ 1
2V

yJ
1V ; ð56Þ
with the elements of the column vector V defined by

Va ¼
X
ij

ðJLL
a;ijD

LL
ij þ JSS

a;ijD
SS
ij Þ : ð57Þ

The elements of the square matrix J are defined by Eq.
(50). A fitted matrix element of the Coulomb interaction
in the Dirac–Hartree–Fock or Dirac–Kohn–Sham equa-
tions then becomes

JTT
ij ¼ VTT y

ij J

1V ; ð58Þ

with JTT
a;ij defining the elements of the column vector V

TT
ij .

We may establish a more direct connection between
this approach and those involving a change in the metric
used to expand .(r) by putting EJ into a form analogous
to Eqs. (32) and (41) by defining a column vector, V,
whose elements are

Va ¼
X
ij

ðJLL
a;ijD

LL
ij þ JSS

a;ijD
SS
a;ijÞ ; ð59Þ

the Coulomb energy may be written in the form

EJ ¼ 1
2Q

yJQ ; ð60Þ
where

Q ¼ J
1V : ð61Þ

The Manby–Knowles formulation selects a metric J,
which fits both the potential and the density using a
single basis set, fvaðrÞg; coupling the tasks in Eq. (50)
through the action of the Poisson operator, P̂P . Since the
criterion which determines the quality of the fit is defined
by Eq. (54). The Manby–Knowles scheme is a reformu-
lation of the fitting scheme based on the electrostatic
metric in which the auxiliary fitting basis for the density
appears through a construction on the expansion of the
potential.
The clear advantage of this approach is that the

integrals Jab are one-particle, two-centre integrals of the
same general form as those involving the nonrelativistic

kinetic energy operator, while the integrals Ja;ij are three-
centre, one-electron overlap integrals. Provided that the
primary orbital basis functions, fM ½T ; i; r	g, and the
auxiliary basis functions, fnaðrÞg; are of Gaussian type,
these quantities may be evaluated analytically and rap-
idly. An apparent disadvantage is that the Coulomb
potential due to the electrons decays as N=r for large r,
where N is the number of electrons, and this behaviour
will be represented poorly by a Gaussian basis set ex-
pansion. If the system is electrically neutral, however,
the potential vðrÞ decays exponentially beyond the clas-
sical limits of the system, provided that one includes
both the nuclear and electronic charges in the definition
of the complete charge density, .ðrÞ. In the evaluation of
the electronic Coulomb energy, therefore, one must ei-
ther restrict oneself to neutral molecules or introduce
temporarily a countercharge (or distribution of charge)
to render the complete charge distribution neutral at
infinity. One represents the potential due to the nuclear
charge (or the countercharge) in the basis set fnaðrÞg: If
the nuclear charges are included, one evaluates the nu-
clear attraction energy and the electron repulsion energy
simultaneously. In order to handle the short-range part
of the nuclear Coulomb fields, the use of special basis
functions,

fAðrÞ ¼ ZAerfcðpjr
 Aj=2Þ
jr
 Aj ; ð62Þ

has been suggested by Manby and Knowles. They are
centred at the position of each point nucleus, A, whose
charge is ZA; and whose position is A. The corresponding
coefficients of these functions in the density expansion,
P̂PfAðrÞ, in Eq. (50) are set equal to unity to satisfy exactly
the Coulomb singularities. On the other hand, if one
includes a single arbitrary countercharge in order to
impose electrical neutrality on the fitted system, its
effects may be eliminated by evaluating a simple
counterterm in the form of a conventional nuclear
attraction integral.

5 Results

In order to determine auxiliary basis sets which are able
to represent relativistic electronic charge densities to
a high accuracy, we generated average configuration
atomic Dirac–Hartree–Fock wave functions using
GRASP [12, 13]. The atomic electron density is spher-
ically symmetrical and can be represented by an
expansion in a scalar basis set of s-type spherical
harmonic Gaussian-type functions. The explicit form
of the auxiliary basis functions, ffig; used in this study is
fiðrÞ ¼ Ni expðkr2ÞY 00 ð#;uÞ ; ð63Þ
where fkig i ¼ 1;Naux is a set of Gaussian exponents
of dimension Naux to be determined by a variational
procedure and Y 00 ð#;uÞ ¼ ð1=4pÞ1=2: Although the
spherical harmonic factor is trivial in this case, we
include it in anticipation of future studies in which
environmental polarization of the atomic charge density
is included in the form of the auxiliary expansion set.
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The radial spinor amplitudes generated by GRASP
were tabulated on a radial grid, on which we constructed
an interpolated representation of the electron density
using B-splines. This was used to evaluate the required
radial integrals h fij.i using adaptive numerical quadra-
ture. We investigated in detail the expansion of the
density using the electrostatic metric, since this is known
to give results which are superior to those obtained using
the overlap metric in nonrelativistic studies. The deter-
mination of the set fkig is based on the maximization of
EJ in Eq. (41). This is equivalent to the minimization of
the error in the coulomb energy,

DEJ ¼ E0J 
 EJ ; ð64Þ
because E0J is a rigorous upper bound to EJ . Note that
this property merely assumes that .ðrÞ is constructed
from the sum over orthonormal, occupied single-particle
functions representing a square-integrable N -electron
density, a requirement which is satisfied equally well
by both the nonrelativistic and the relativistic versions of
the procedure. The boundedness of the variational
procedure is a consequence solely of the laws of
electrostatics and, apart from the preceding restriction,
is independent of the procedure used to generate the
density.
The exponent sets were generated using a modifica-

tion of the even-tempered prescription, and are defined
by three parameters, fa; b; cg, whose values are deter-
mined by the variational procedure. The exponent values
are defined using the recurrence relation

ki ¼ b 1þ c
i 
 1

Naux þ 1

� �2" #
ki
1; i ¼ 2; 3; . . . ;Naux

ð65Þ
starting with the seed value k1 ¼ a.

6 Discussion

For the elements from H to Ne, (Table 1), density fits
were obtained which were judged to be good, very good,
or excellent. The most approximate fits involved an
expansion of six s-type functions, and reproduced the
atomic Coulomb energy to millihartree accuracy, or
better. Increasing the expansion length to ten s-type
functions improved the accuracy of the fitted Coulomb
energy to 1� 10
5 hartree, and an expansion of 15
functions reproduced the Coulomb energy to 1� 10
5
hartree, which is at the level of the accuracy to which the
original spinor amplitudes are obtained by GRASP
using the default operational parameters. For each of
the 6-,10- and 15-membered sets, smooth variation was
found in the parameter set fa; b; cg as the nuclear charge
was increased. As the dimension of the set was increased,
there was a strong tendency for the parameter c to
decrease in value. This is in keeping with the mathemat-
ical result that an even-tempered set of Gaussian-type
functions, constructed by setting c ¼ 0; tends towards
completeness as Naux ! 1 provided that a ! 0; b ! 1;
and bNaux ! 1. Certainly, the optimization procedure
naturally returns values of a and b which tend towards

the correct limiting values, and will satisfy the additional
requirement limNaux ! 1, bNaux ! 1 provided that
lim Naux ! 1 c ! 0; because this is a feature of the
conventional even-tempered series of Gaussian-type
functions. For these first-row elements, the auxiliary
basis set is effectively saturated, and the redundancy of
the parameter c becomes increasingly apparent in the
practical limit Naux ! 1.
A pattern similar to that found for the first-row

elements is observed for the elements from Na to Ar
(Table 2), except that the numerical accuracy of the fit is
uniformly degraded. A larger expansion is required in
order to obtain millihartree accuracy, and an expansion
of 15 functions is required in order to secure fitted
Coulomb energies at better than microhartree accuracy.
This behaviour persists in our fitted expansions of the
Coulomb potential for the second-period elements K-Kr
(Table 3), and the first-row transition-metal elements,
Sc-Zn (Table 4), an expansion of 18 s-type functions
being able to reproduce the atomic Coulomb energy to
an accuracy of 10
5.
On examining the behaviour of the optimized auxil-

iary sets down the group C-Pb (Table 5), the accuracy is

Table 1. Values of the a, b, and c parameters for different numbers
of fit functions, Naux, determined for the first-row elements. The
fitted and finite-difference values of the Coulomb energy are given
in hartree atomic units

Naux a b c Fitted
Coulomb
energy

Coulomb
energy

H 6 0.2012 2.2080 2.6669 0.312506122 0.312506128
10 0.0883 2.0020 0.4865 0.312506128
15 0.0820 1.9972 0.1388 0.312506128

He 6 0.4616 2.4051 2.0699 2.05166385 2.05166394
10 0.3333 2.0427 1.0157 2.05166394
15 0.1001 1.9997 1.0010 2.05166394

Li 6 0.0939 3.3748 0.5352 4.06263733 4.06268466
10 0.0658 2.1228 1.0635 4.06268450
15 0.0588 2.0103 0.0939 4.06268466

Be 6 0.1756 3.1345 0.9192 7.15778772 7.15788871
10 0.1166 2.1904 0.8561 7.15788847
15 0.0760 1.9997 0.0906 7.15788871

B 6 0.2516 3.1277 0.9296 11.5867658 11.5869516
10 0.1496 2.3278 0.5257 11.5869511
15 0.0954 2.0139 0.0735 11.5869516

C 6 0.3406 3.1676 0.8415 17.7351828 17.7354720
10 0.1877 2.3440 0.5580 17.7354710

15 0.1284 2.0235 0.0834 17.7354720

N 6 0.4506 3.1922 0.7753 25.9755716 25.9759749
10 0.2421 2.3352 0.5735 25.9759736

15 0.1704 2.0379 0.0598 25.9759749

O 6 0.5704 3.2351 0.6773 36.5684650 36.5690134
10 0.2992 2.3321 0.5751 36.5690116
15 0.2177 2.0309 0.0738 36.5690134

F 6 0.5478 2.6869 2.4399 49.8945358 49.8952449
10 0.3673 2.3281 0.5756 49.8952425
15 0.2620 2.0398 0.0498 49.8952448

Ne 6 0.6500 2.7006 2.4399 66.2089025 66.2097573
10 0.4387 2.3206 0.5954 66.2097542
15 0.3190 2.0335 0.0727 66.2097572
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seen to decrease steadily as the nuclear charge is in-
creased, but remains acceptable for Pb for an expansion
length of less than 20 s-type functions. In the case of Pb,
we found that allowing nonzero values of the parameter
c in the generation of the Gaussian parameter set causes
the auxiliary basis set to suffer from computational lin-
ear dependence for Naux > 20; so a conventional two-
parameter, even-tempered set involving only a and b is
preferred if larger spherical expansions are required.
This was not pursued further here, because in practice
one must include polarization functions in molecular
calculations involving l > 0 to reproduce the local an-
isotropy of the charge density in molecular environ-
ments. These additional polarized functions are best
determined by fitting the density to representative
molecular hydrides or to atoms perturbed by the field
of point charges, and will form the subject of future
investigations.
The significant feature of the numerical results ob-

tained here is that they are similar in character to those
which are obtained if the same optimization procedure
is applied to the determination of nonrelativistic fitting
parameters. The variation of the parameters across a
row of the periodic table is smooth and regular, and
tends towards a complete set of even-tempered func-
tions as the dimension of the fitting set is expanded.
The accuracy of the fit is a smooth function of the
dimension of the auxiliary set and of the nuclear
charge, so reliable representations of the Coulomb

energy may be obtained using the electrostatically
weighted fitting metric. The accuracy of the fit down
a group of the periodic table tends to decrease, and
requires larger exponents and expansions of larger
dimension to achieve a given accuracy; however, this
rather mild increase in computational requirements
must be offset against the rapid increase in cost if no
fitting procedure is adopted in relativistic calculations.
As the nuclear charge is increased, the need to include
f-type functions in the large-component space is
aggravated by the basis set matching procedure, which
introduces an equal number of g-type functions in
the small-component spinor space. The multicentre
Coulomb integrals, even when evaluated using the
J-matrix method, rapidly increase in both number and
cost, but when summed over occupied spinors, the
density, and in particular the contribution to the
density from the small-component functions, is well-
approximated by a weakly anisotropic function. This
essentially classical function ought not to be con-
structed term-by-term from spinor overlap densities if it
can be avoided, because the internal spinor structure is

Table 2. Values of the a, b, and c parameters for different numbers
of fit functions, Naux, determined for the second-row elements. The
fitted and finite-difference values of the Coulomb energy are given
in hartree atomic units

Naux a b c Fitted
Coulomb
energy

Coulomb
energy

Na 8 0.1113 3.2019 0.3669 80.1302077 80.1312482
12 0.0700 2.3715 0.3502 80.1312399
15 0.0581 2.0540 0.4521 80.1312480

Mg 8 0.1564 3.0462 0.5267 95.9529949 95.9541530
12 0.1026 2.3217 0.3929 95.9541451
15 0.0848 2.0468 0.4023 95.9541528

Al 8 0.1781 3.0450 0.5123 113.011944 113.013535
12 0.0991 2.2389 0.6089 113.013521
15 0.0775 2.1398 0.1918 113.013535

Si 8 0.2205 2.9886 0.5661 132.131863 132.133695
12 0.1246 2.1932 0.6867 132.133679
15 0.1016 2.1448 0.1116 132.133694

P 8 0.2769 2.9167 0.6443 153.522702 153.524712
12 0.1606 2.1497 0.7562 153.524695
15 0.1245 1.9645 0.6020 153.524711

S 8 0.3376 2.8658 0.6996 177.232981 177.235195
12 0.1973 2.1146 0.8171 177.235177
15 0.1629 2.0471 0.3096 177.235194

Cl 8 0.4060 2.8221 0.7475 203.483593 203.486008
12 0.2394 2.0816 0.8777 203.485988
15 0.1982 2.0331 0.3173 203.486007

Ar 8 0.4779 2.7939 0.7758 232.340728 232.343363
12 0.2831 2.0560 0.9258 232.343341
15 0.2355 2.0103 0.3577 232.343362

Table 3. Values of the a, b, and c parameters for different numbers
of fit functions, Naux, determined for the third-row elements. The
fitted and finite-difference values of the Colulomb energy are given
in hartree atomic units

Naux a b c Fitted
Coulomb
energy

Coulomb
energy

K 10 0.0146 3.8411 0.4175 258.235504 258.236411
15 0.0537 2.0757 0.5059 258.236395
17 0.0489 2.0735 0.1578 258.236408
18 0.0473 2.0660 0.0038 258.236409

Ca 10 0.0227 3.6203 0.4196 286.046703 286.047703
15 0.0719 2.0250 0.5750 286.047688
17 0.0661 2.0371 0.0811 286.047700
18 0.0646 2.0204 0.1046 286.047701

Ga 10 0.1477 2.8971 1.7741 840.778137 840.779418
15 0.1277 2.1994 0.1729 840.779308
17 0.1032 2.0248 0.2794 840.779395
18 0.0977 2.0350 0.1056 840.779406

Ge 10 0.1771 2.8134 1.9631 903.454214 903.455604
15 0.1458 2.1787 0.2048 903.455495
17 0.1201 2.0045 0.3158 903.455583
18 0.1140 2.0169 0.1351 903.455593

As 10 0.2176 2.7090 2.2244 969.013181 969.014679
15 0.1736 2.1427 0.2645 969.014580
17 0.1363 2.0050 0.2744 969.014659
18 0.1340 2.0058 0.1139 969.014669

Se 10 0.1159 3.4726 0.1016 1037.37578 1037.37720
15 0.2020 2.1140 0.3123 1037.37711
17 0.1856 2.0777 0.0187 1037.37717
18 0.1622 1.9633 0.2372 1037.37720

Br 10 0.1381 3.3894 0.1673 1108.79767 1108.79903
15 0.2339 2.0854 0.3622 1108.79894
17 0.2168 2.0730 0.0468 1108.79900
18 0.1900 1.9413 0.2668 1108.79902

Kr 10 0.1645 3.3038 0.2518 1183.21050 1183.21184
15 0.2661 2.0621 0.4028 1183.21175
17 0.2433 2.0682 0.0194 1183.21181
18 0.2152 1.9270 0.3091 1183.21183
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smeared out in the averaging process which generates
the density. The use of fitting functions, even involving
a larger expansion than would be required in a corre-
sponding nonrelativistic study of the same system,
represents a huge computational saving compared with
the brute force evaluation of the Coulomb energy.

7 Conclusion

The formulation of the relativistic molecular electronic
structure problem using kinetically balanced sets of
Gaussian-type functions immediately suggests the ex-
tension of several existing computational techniques in
nonrelativistic quantum chemistry. These include the use
of J-matrix methods to evaluate the Coulomb energy
exactly within a common scalar Hermite Gaussian-type-
function basis set for both the large- and small-
component densities, and the use of atom-centered
auxiliary basis sets to fit the density, summed over both
large- and small-component contributions, using suit-
ably chosen basis set parameters determined by varia-
tional calculations of smaller model problems, such as
free atoms, atoms perturbed by effective ligand fields, or
small molecular species such as hydrides. Not considered
in the present study are multipole expansions of the
potential, the extension of which to the relativistic
framework presents no difficulties since the component
charge densities are classical entities, and the small-
component density is a structure which is localized to the
positions of the constituent nuclei.
In the construction of the Coulomb energy or finite-

dimensional representations of the Coulomb or
exchange operators, the main unavoidable disadvantage
of the four-component formulation is that such matrix
representations are necessarily larger than their nonrel-
ativistic counterparts, and they may be intrinsically
complex for some symmetry types. The cost of matrix
diagonalization is not, however, the part of a mean-field
calculation which places a limit on the size of the system
that can be studied. It is the cost of constructing that
representation and the evaluation of the Coulomb and
exchange–correlation contributions which dominate the

Table 4. Values of the a, b, and c parameters for different numbers
of fit functions, Naux, determined for the first-row transition-metal
elements. The fitted and finite-difference values of the Colulomb
energy are given in hartree atomic units

Naux a b c Fitted
Coulomb
energy

Coulomb
energy

Sc 10 0.1281 2.5352 0.8932 319.794704 319.797491
12 0.0961 2.2368 0.7408 319.797052
15 0.0810 2.0232 0.5664 319.797473
17 0.0744 2.0223 0.2216 319.797487
18 0.0721 2.0192 0.0703 319.797489

Ti 10 0.1399 2.5503 0.8800 356.745371 356.748283
12 0.1053 2.2454 0.7153 356.747795
15 0.0895 2.0288 0.5430 356.748262
17 0.0819 2.0305 0.1895 356.748279
18 0.0790 2.0236 0.0419 356.748280

V 10 0.0350 3.5832 0.3366 397.163834 397.164689
12 0.1134 2.2613 0.6788 397.164148
15 0.0969 2.0393 0.5107 397.164664
17 0.0890 2.0443 0.1500 397.164683
18 0.0796 1.9847 0.0977 397.164686

Cr 10 0.0483 3.3001 1.0938 444.938978 444.939903
12 0.1195 2.2846 0.6348 444.939286
15 0.0982 2.0719 0.4413 444.939870
17 0.0887 2.0869 0.0592 444.939894
18 0.0777 1.9294 0.3496 444.939900

Mn 10 0.0579 3.2456 1.1311 488.033859 488.034849
12 0.1293 2.2946 0.6096 488.034197
15 0.1120 2.0617 0.4505 488.034815
17 0.1029 2.0713 0.0812 488.034840
18 0.0907 1.9167 0.3654 488.034847

Fe 10 0.0481 3.5882 0.2685 538.815431 538.816381
12 0.1373 2.3117 0.5769 538.815669
15 0.1193 2.0734 0.4220 538.816342
17 0.1101 2.0824 0.0590 538.816370
18 0.0960 1.9288 0.3319 538.816378

Co 10 0.0541 3.5641 0.3063 593.366364 593.367407
12 0.1451 2.3288 0.5447 593.366633
15 0.1268 2.0855 0.3930 593.367363
17 0.1170 2.0947 0.0253 593.367394
18 0.0903 2.0135 0.0648 593.367401

Ni 10 0.0573 3.6114 0.1772 651.695754 651.696921
12 0.1532 2.3449 0.5166 651.696081
15 0.1344 2.0963 0.3681 651.696871
17 0.1249 2.1036 0.0372 651.696905
18 0.1079 1.9470 0.2918 651.696917

Cu 10 0.1048 3.0454 1.4728 720.751243 720.752319
12 0.1598 2.3645 0.4851 720.751367
15 0.1334 2.1295 0.3064 720.752255
17 0.0860 2.0740 0.1032 720.752298
18 0.0931 2.0353 0.0558 720.752312

Zn 10 0.1541 2.7775 2.1513 780.732514 780.733744
12 0.1689 2.3778 0.4613 780.732763
15 0.1493 2.1188 0.3203 780.733679
17 0.1396 2.1305 0.0213 780.733721
18 0.0969 2.0544 0.0073 780.733734

Table 5. Values of the a, b, and c parameters for different numbers
of fit functions, Naux, determined for the group IV elements. The
fitted and finite-difference values of the Colulomb energy are given
in hartree atomic units

Naux a b c Fitted
Coulomb
energy

Coulomb
energy

C 6 0.3406 3.1676 0.8415 17.7351828 17.7354720
10 0.1877 2.3440 0.5580 17.7354710
15 0.1284 2.0235 0.0834 17.7354720

Si 8 0.2205 2.9886 0.5661 132.131863 132.133695
12 0.1246 2.1932 0.6867 132.133679
15 0.1016 2.1448 0.1116 132.133694

Ge 10 0.1771 2.8134 1.9631 903.454214 903.455604
15 0.1458 2.1787 0.2048 903.455495
17 0.1201 2.0045 0.3158 903.455583
18 0.1140 2.0169 0.1351 903.455593

Sn 12 0.1604 2.4526 1.1310 2478.36176 2478.36354
14 0.0417 2.7129 0.2829 2478.36288
17 0.1519 1.9639 0.4639 2478.36307
19 0.1353 1.9922 0.1223 2478.36339

Pb 14 0.2484 2.0937 1.2789 8073.62810 8073.64600
15 0.2001 2.2314 0.7995 8073.64182
17 0.1491 2.4102 0.1651 8073.64528
18 0.0617 2.4098 0.1299 8073.64541
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computational budget of the calculation. In a four-
component calculation these operations are always
evaluated within two-component subspaces, obviating
the algorithmic need to reduce the four-component Di-
rac operator into an effective two-component form: the
algorithm is already in two-component form, and the
four-component structure is restored at each matrix di-
agonalization. From a computational point of view, a
four-component calculation involves the construction of
a small number of two-component representations, and
many of the effective operators which are encountered in
the two-component formalism introduce operations that
are procedurally equivalent to the evaluation of
Coulomb or exchange–correlation matrix elements over
functions generated by kinetic balance.
No significant problem exists with the use of kineti-

cally balanced sets of G-spinor functions in the solution
of matrix representations of the Dirac equation. It is
certainly the case that small variational bounds failures
may be encountered of the order ðZ=cÞ4; but these are
indicative only of basis set incompleteness and do not
affect the quality of bound-state solutions in any sig-
nificant way. If fitting procedures are introduced in or-
der to evaluate the Coulomb energy, or numerical grids
are used to evaluate matrix elements of the exchange–
correlation potential, strict variational bounding of the
energy is abandoned even in the nonrelativistic model of
quantum chemistry. The intrinsic uncertainties in the
energy introduced by these procedures are both larger
and generally of greater chemical significance than the
small variational failures caused by the use of incomplete

kinetically balanced sets, whose shortcomings are con-
tained almost entirely within the representation of
chemically inert core orbitals.
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